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Direct Sulfur Removal

Challenge: All fossil fuels have persistent S contamination. 
Production of H2 in the next several decades will be derived 
from fossil fuels (NG, coal, petroleum). Desulfurized H2 is a 
necessity to facilitate reforming to generation of pure H2 for 
storage and use in fuel cells use. 
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• Objective: Develop a warm temperature method direct 
sulfur removal technology (gaseous sulfur to solid sulfur) 
with parts per billion separation efficiency.

• Goals:
− Lower initial capital investment
− Synergysm with available systems
− Removal of sulfur to ‘ppbv’ levels

• H2S + 1/2O2 → 1/nSn + H2O
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Conventional H2S removal methods

• Currently available catalysts do not 
meet required performance goals for 
any H2 generating or utilization 
systems.

– Adsorption processes remove organic 
sulfides and require high pressure H2
to regenerate

– High temperature MO catalysts have 
short lifetimes and show rapid 
decrease in activity

– High-temperature processes generate 
SO2

• Need to develop activated carbon 
catalysts that facilitate oxidation of 
H2S:

− High microporosity and preferential 
adsorption of H2S over CO required.

DOE technical targets assume a 
sulfur level of 6 ppm, however this 
target requires development of sulfur 
tolerant catalysts and membranes.
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Advantages of SCOHS
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ZnO removal efficiency• Removal Efficiency: SCOHS has part 
per trillion (ppt) thermodynamic sulfur 
removal efficiencies.

• Water Sensitivity: Unlike most metal 
oxide based systems, SCOHS is 
relatively insensitive to water content, 
which can be found in high 
concentrations in some reformate 
streams.

• Operational Mode: Can operate in 
continuous or discontinuous modes

• Benefits:
− Water shift reaction catalyst
− Separation/catalytic membranes
− Fuel cells using natural gas, 

transportation fuels
− Steam reforming catalyst
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Exceptionally Low Sulfur Levels Can be Achieved with 
the SCOHS Process

• Carbon-based catalysts offer very 
exciting potential to reach low (ppt) 
sulfur levels

• There are several issues to address:
− What is the mechanism for preferential 

adsorption of CO over H2S?
− Design materials selective to H2S.
− Can high sulfur conversion/removal 

efficiencies be obtained for H2S?  
− Can carbon catalysts be synthesized with 

high activity?
− What material purity/impurity are 

required?
− What factors affect aging and reliability?
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Fundamental Understanding Will  Be Gained Through Kinetic 
Studis and In-situ Analysis

Expected  Results  of Kinetic and In-situ Studies

Provide  fundamental scientific  basis to  
develop  breakthrough carbon catalyst 
technology with high sulfur and low CO 
selectivity for gas cleanup

Will  independently  quantify effects  of:
[1] catalytic activity of various activated   
microporous carbons

[2] impurities on catalytic activity and structure

[3] Sulfur removal, conversion efficiency 
competitive adsorption of H2S vs. CO

[4] competitive adsorption of H2S vs. C on 
conversion efficiency

Kinetic Studies
• Kinetics of sulfur adsorption and desorption will 

be monitored by temperature programmed 
desorption and reduction experiments and 
analyzed using IR spectroscopy

• Competitive adsorption will be monitored 
quantitatively using DRIFTS

Characterization
• In-situ EXAFS will be developed and used to 

investigate adsorbed sulfur species at reaction 
conditions (temperature and environment)

• NEXAFS will be investigated as a means to provide 
information on the electronic structure of the 
catalyst for correlation to its catalytic activity

• EDS and EELS will provide high resolution species 
identification of impurities and S distribution

• Ex-situ reactor available for understanding 
chemical, structural, and crystallographic changes
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DRIFTS
Diffuse Reflectance mid-Infrared Fourier Transform 

Spectroscopy
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DRIFTS instrument made available through 
ORNL-NTRC collaboration:

MIDAC FTIR spectrometer
Harrick DRIFT accessory
Spectral range 4000-500 cm-1
1 cm-1 resolution

DRIFTS can provide quantitative in-situ analysis of 
catalytic reactions by analyzing spectroscopic 
changes due to the functional group content

Graphics courtesy of ORNL-NTRC
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Prototype Structures for Activated Carbon 
Materials

• Generate prototype carbon structures consistent with experiment
− STM studies

• Perform adsorption studies on a number of local configurations
− activated carbon is amorphous: Adsorption occurs locally
− Provide information on the variety and strength of bonding, heats of formation of key 

molecules (I.e. CO-S, etc.) on specific local environments

• This information would be used in conjunction with experiment to try 
to process out local atomic arrangements that favor CO-S formation

• First Principles Total Energy calculations
− Input: atomic species
− Local density approximation to density functional theory

• Treating the quantum many body of effects of electron exchange and 
correlation
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H2S Catalytic Partial Oxidation Process 
Chemistry

• H2S partial oxidation reaction
− Discovered 1883 by Carl F. Claus

• H2S + 1/2O2
1/8S8 + H2O

• 1/8S8
(s,l) 1/nSn 

(g)

• Possible side reactions
• 1/nSn + O2 SO2

• H2S + 3/2O2 SO2 + H2O
• 1/nSn + CO          COS
• 2CO          C(s) + CO2

• CO + 1/2O2 CO2

Hr
400K Gr

400K

-208.3     -182.6
Pv

400K = 6.92 Pa
Pv

500K = 764 Pa

(KJ/mol) (KJ/mol)

-300.2     -300.9
-518.6     -487.5
-31.0       -28.4
-173.3     -101.9
-283.5     -248.3
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H2S Partial Catalytic Oxidation Performance in 
Natural Gas
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Testing and analysis carried out by NETL
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Program Milestones

• Fabricate and test several different types of 
catalysts from activated granular carbons to 
more sophisticated activated nanowebs and 
monolithic fibrous structures. (9/03)

• Establish a working simulation model capable of 
describing the catalytic reaction that can be used 
to guide catalyst synthesis.  (9/03)
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Anticipated Developments

•Development a reliable (ppb level) desulfurization
catalyst with minimal or no CO adsorption 

•Develop a continuous desulfurization process
•Develop an understanding of role of surface impurities 

and defects on adsorption of H2S and CO in activated 
carbon
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Relevance to DoE  R&D Plan
The presence of sulfur and other impurities is a fundamental barrier to the 
practical implementation of fuel cell concepts.  In particular, fuel cell durability is 
strongly affected by impurity content.

The presence of sulfur and other impurities is a fundamental barrier to the 
practical implementation of fuel cell concepts.  In particular, fuel cell durability is 
strongly affected by impurity content.

• Sulfur affects the durability of fuel cell components, fuel processors 
and distributed energy systems.

H2 Purification/
CO Clean-up

“Liquid fuels contain impurities such as sulfur compounds.  
These compounds and their derivatives as well as CO must 
be removed to prevent loss of performance in the fuel cell.”

Fuel-Flexible Fuel Processors Technical Barriers:
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Significant Collaborations

• Collaboration with NETL on 
reactor design and test 
methods

• Discussions with SGL Carbon 
on carbon materials 
development

• Interest in technology from:
− ChevronTexaco
− ConocoPhillips
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